Câu hỏi của Vinastudy - Hệ Thống Giáo Dục Trực Tuyến - Toán lớp 7 | Học trực tuyến

0

Cho x và y là hai đại lượng tỉ lệ nghịch,${{x}_{1}}$   và ${{x}_{2}}$  là hai giá trị của x,${{y}_{1}}$   và ${{y}_{2}}$  là hai giá trị tương ứng của y. Biết ${{x}_{2}}=2\text{ };2{{x}_{1}}-3{{y}_{1}}=22;{{y}_{1}}=5$  Khi đó ${{x}_{1}}+{{y}_{2}}=.......?$  

1 Trả Lời

Lưu ý khi trả lời:

- Cần có tài khoản trước khi gửi bình luận.

- Trả lời giúp bạn cũng là giúp mình.

- Trả lời theo nội dung câu hỏi không bình luận lan man lạc chủ đề.

- Gửi câu trả lời phải rõ ràng, viết tiếng Việt có dấu.

- Trả lời có đính kèm liên kết tới website khác sẽ bị ban vĩnh viễn.

- Vi phạm chính sách sẽ dẫn tới việc bị dừng tất cả dịch vụ sử dụng tại website.

  • 0

    Bài giải:


    x và y là hai đại lượng tỉ lệ nghịch nên ta có:


    $\frac{{{x}_{1}}}{{{x}_{2}}}=\frac{{{y}_{2}}}{{{y}_{1}}}\Rightarrow \frac{{{x}_{1}}}{2}=\frac{{{y}_{2}}}{5}$  . Theo tính chất của dãy tỉ lệ thức bằng nhau ta có:


    $\frac{{{x}_{1}}}{2}=\frac{{{y}_{2}}}{5}=\frac{{{x}_{1}}+{{y}_{2}}}{2+5}=\frac{2{{x}_{1}}-3{{y}_{2}}}{2.2-3.5}=\frac{22}{-11}$


    ${{x}_{1}}+{{x}_{2}}=-14$