Câu hỏi của Vinastudy - Hệ Thống Giáo Dục Trực Tuyến - Toán lớp 6 | Học trực tuyến

0

Tìm hai số tự nhiên a, b biết a - b = 7, BCNN(a, b) = 140.

1 Trả Lời

Lưu ý khi trả lời:

- Cần có tài khoản trước khi gửi bình luận.

- Trả lời giúp bạn cũng là giúp mình.

- Trả lời theo nội dung câu hỏi không bình luận lan man lạc chủ đề.

- Gửi câu trả lời phải rõ ràng, viết tiếng Việt có dấu.

- Trả lời có đính kèm liên kết tới website khác sẽ bị ban vĩnh viễn.

- Vi phạm chính sách sẽ dẫn tới việc bị dừng tất cả dịch vụ sử dụng tại website.

  • 0

    Lời giải:


    Gọi d = ƯCLN (a, b). Suy ra  a = md; b = nd với m, n thuộc Z+; (m, n) = 1, m>n.


    Suy ra  a - b = d(m - n) = 7   (1)


    BCNN(a, b) = mnd = 140    (2)


    Suy ra  d là ước chung của 7 và 140


    Suy ra  d $\in$ {1; 7}.


    Thay lần lượt các giá trị của d vào (1) và (2) ta thấy chỉ có d = 7 thỏa mãn


    d = 7 thì m - n = 1 và mn = 20. Suy ra m = 5, n = 4


    Vậy  a = 5.7 = 35 ; b = 4.7 = 28 .