Câu hỏi của Vinastudy - Hệ Thống Giáo Dục Trực Tuyến - Toán lớp 5 | Học trực tuyến

0

Từ các chữ số 0; 1; 3; 6 lập tất cả các số thập phân mà phần thập phân có một, hai hay ba chữ số và ở mỗi số có đủ bốn chữ số trên, mỗi chữ số xuất hiện một lần. Lập được tất cả … số như vậy ?

1 Trả Lời

Lưu ý khi trả lời:

- Cần có tài khoản trước khi gửi bình luận.

- Trả lời giúp bạn cũng là giúp mình.

- Trả lời theo nội dung câu hỏi không bình luận lan man lạc chủ đề.

- Gửi câu trả lời phải rõ ràng, viết tiếng Việt có dấu.

- Trả lời có đính kèm liên kết tới website khác sẽ bị ban vĩnh viễn.

- Vi phạm chính sách sẽ dẫn tới việc bị dừng tất cả dịch vụ sử dụng tại website.

  • 0

    Bài giải:


    * Nếu có 1 chữ số ở phần nguyên thì số thập phân có dạng: a,bcd
    - Có 4 cách chọn a
    - Có 3 cách chọn b (b≠a)
    - Có 2 cách chọn c (c≠a, c≠b)
    - Có 1 cách chọn d (d≠a, d≠b, d≠c)
    Có 4 x 3 x 2 x 1=24 số thập phân có dạng a,bcd
    * Nếu có 2 chữ số ở phần nguyên thì số thập phân có dạng: ab,cd
    - Có 3 cách chọn a (a≠0)
    - Có 3 cách chọn b (b≠a)
    - Có 2 cách chọn c (c≠a,c≠b)
    - Có 1 cách chọn d (d≠a, d≠b, d≠c)
    Có 3 x 3 x 2 x 1=18 số thập phân có dạng ab,cd
    * Nếu có 3 chữ số ở phần nguyên thì số thập phân có dạng: abc,d
    - Có 3 cách chọn a (a≠0)
    - Có 3 cách chọn b (b≠a)
    - Có 2 cách chọn c (c≠a,c≠b)
    - Có 1 cách chọn d (d≠a, d≠b, d≠c)
    Có 3 x 3 x 2 x 1=18 số thập phân có dạng abc,d
    Vậy: Có thể lập được tất cả là: 24 + 18 + 18 = 60 số thập phân như vậy