FB Twitter Youtube Google +
VINASTUDY - HỆ THỐNG GIÁO DỤC TRỰC TUYẾN DÀNH CHO HỌC SINH TỪ LỚP 1 - 12
  1. Trang chủ
  2. Ôn thi vào lớp 10
  3. Toán
  4. Luyện thi vào 10 môn Toán (Hệ công lập)
  5. Rút gọn căn thức không chứa biến ( Phần 1)

Rút gọn căn thức không chứa biến ( Phần 1)

Vui lòng đăng nhập để xem nội dung này

  • Group trao đổi bài
  • Fanpage trung tâm
  • Tư vấn qua Zalo
  • Phản hồi qua 0832.64.64.64
  • RÚT GỌN CĂN THỨC KHÔNG CHỨA BIẾN (PHẦN 1)

    KIẾN THỨC CẦN NHỚ

    1-x là căn bậc hai của số a ( không âm)

    Khi: ${{x}^{2}}=a$

    Kí hiệu: $x=\sqrt{a}(a\ge 0)$

    2-Điều kiện tồn tại của biểu thức trong căn

        $\sqrt{A};A\ge 0$

    VD: $\sqrt{x-4}$; ĐK: $x-4\ge 0$

    3-Hằng đẳng thức căn bậc hai

    $\sqrt{{{A}^{2}}}=\left| A \right|=\left\{ \begin{align}  & A,(A\ge 0) \\  & -A,(A<0) \\ \end{align} \right.$

    VD: $\sqrt{{{\left( x-1 \right)}^{2}}}$ $=\left| x-3 \right|$$=\left\{ \begin{align} & x-3,(x-3\ge 0) \\  & -(x-3),(x-3<0) \\ \end{align} \right.$$=\left\{ \begin{align}  & x-3,(x\ge 3) \\  & -(x-3),(x<3) \\ \end{align} \right.$

    4-Các phép biến đổi căn thức

    + $\sqrt{A.B}=\sqrt{A}.\sqrt{B}$ (đk: $A\ge 0;B\ge 0$)

    + $\sqrt{\frac{A}{B}}=\frac{\sqrt{A}}{\sqrt{B}}$ (đk: $A\ge 0;B\ge 0$)

    + $\sqrt{{{A}^{2}}.B}=\sqrt{{{A}^{2}}}.\sqrt{B}=\left| A \right|.\sqrt{B}$ (đk: $B\ge 0$)

    + $\sqrt{\frac{A}{B}}=\sqrt{\frac{A.B}{{{B}^{2}}}}=\frac{\sqrt{A.B}}{\left| B \right|}$ (đk: $A.B\ge 0;B\ne 0$)

    + $\frac{A}{\sqrt{B}}=\frac{A.\sqrt{B}}{\sqrt{B}.\sqrt{B}}=\frac{A.\sqrt{B}}{\left| B \right|}=\frac{A.\sqrt{B}}{B}$ (đk: $B\ge 0$)

    + $\frac{C}{\sqrt{A}+\sqrt{B}}=\frac{C.(\sqrt{A}\sqrt{B})}{(\sqrt{A}+\sqrt{B})(\sqrt{A}-\sqrt{B})}=\frac{C.(\sqrt{A}-\sqrt{B})}{A-B}$ (đk: $A\ge 0;B\ge 0$)

    + $\frac{A}{\sqrt{A}+B}=\frac{A(\sqrt{A}-B)}{(\sqrt{A}+B)(\sqrt{A}-B)}=\frac{A(\sqrt{A}-B)}{A-{{B}^{2}}}$

    BÀI TẬP

    Lưu ý:

    (1) thành thạo các phép biến đổi

    (2) trục căn thức, quy đồng

    (3) rút gọn

    VD1: thực hiện phép tính

    a) $\sqrt{\frac{8}{{{\left( 1-\sqrt{2} \right)}^{2}}}}$

    b) $\left( \sqrt{20}-\sqrt{45}+\sqrt{5} \right).\sqrt{5}$

    c) $2.\sqrt{\frac{16}{3}}-3.\sqrt{\frac{1}{27}}-6.\sqrt{\frac{4}{75}}$

    Giải:

    a) $\sqrt{\frac{8}{{{\left( 1-\sqrt{2} \right)}^{2}}}}=\frac{2\sqrt{2}}{\left| 1-\sqrt{2} \right|}=\frac{2\sqrt{2}}{\sqrt{2}-1}=\frac{2\sqrt{2}(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}=4+2\sqrt{2}$

    b) $\left( \sqrt{20}-\sqrt{45}+\sqrt{5} \right).\sqrt{5}=(2\sqrt{5}-3\sqrt{5}+\sqrt{5}).\sqrt{5}=0$

    c) $2.\sqrt{\frac{16}{3}}-3.\sqrt{\frac{1}{27}}-6.\sqrt{\frac{4}{75}}=2.4.\sqrt{\frac{1}{3}}-\frac{3}{3}\sqrt{\frac{1}{3}}-\frac{6.2}{5}\sqrt{\frac{1}{3}}=8.\sqrt{\frac{1}{3}}-\sqrt{\frac{1}{3}}-\frac{12}{5}\sqrt{\frac{1}{3}}=\frac{23}{5\sqrt{3}}=\frac{23\sqrt{5}}{15}$

    VD2: thực hiện phép tính

    a) $2\sqrt{18}-7\sqrt{2}+\sqrt{162}$

    b) $2\sqrt{2}(\sqrt{3}-2)+{{(1+2\sqrt{2})}^{2}}-2\sqrt{6}$

    c) $(2\sqrt{8}+3\sqrt{5}-7\sqrt{2})(\sqrt{72}-5\sqrt{20}-2\sqrt{2})$

    Giải:

    a) $2\sqrt{18}-7\sqrt{2}+\sqrt{162}=6\sqrt{2}-7\sqrt{2}+9\sqrt{2}=8\sqrt{2}$

    b) $2\sqrt{2}(\sqrt{3}-2)+{{(1+2\sqrt{2})}^{2}}-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9$

    c) $(2\sqrt{8}+3\sqrt{5}-7\sqrt{2})(\sqrt{72}-5\sqrt{20}-2\sqrt{2})=(4\sqrt{2}+3\sqrt{5}-7\sqrt{2})(6\sqrt{2}-10\sqrt{5}-2\sqrt{2})$

       $=(3\sqrt{5}-3\sqrt{2})(4\sqrt{2}-10\sqrt{5})=42\sqrt{10}-174$

    Xem thêm

    Bình luận

    ĐỀ CƯƠNG KHÓA HỌC

    1. Bài Giảng Học Thử

    2. CHUYÊN ĐỀ 1: CĂN THỨC

    3. CHUYÊN ĐỀ 2: HÀM SỐ BẬC NHẤT

    4. CHUYÊN ĐỀ 3: HỆ THỨC LƯỢNG TRONG TAM GIÁC

    5. CHUYÊN ĐỀ 4: ĐƯỜNG TRÒN.

    6. CHUYÊN ĐỀ 5: HÀM SỐ BẬC HAI

    7. CHUYÊN ĐỀ 6: PHƯƠNG TRÌNH

    8. CHUYÊN ĐỀ 7: PHƯƠNG TRÌNH VÔ TỈ

    9. CHUYÊN ĐỀ 8: HỆ PHƯƠNG TRÌNH

    10. CHUYÊN ĐỀ 9: GIẢI BÀI TOÁN BẰNG CÁCH LẬP HPT.

    11. CHUYÊN ĐỀ 10: BẤT PHƯƠNG TRÌNH.

    12. CHUYÊN ĐỀ 11: TỨ GIÁC NỘI TIẾP

    Thời gian mở của
    Phục vụ 24/7
    Bản quyền thuộc về trung tâm Vinastudy