Câu hỏi của Vinastudy - Hệ Thống Giáo Dục Trực Tuyến - Toán lớp 4 | Học trực tuyến
0
Find the natural number y:
Y x 20002 = $\overline{1a8bc9d7}$ x 2
( a, b, c, d is digits )
Hỏi lúc: 13-12-2018 14:36
1 Trả Lời
Lưu ý khi trả lời:
- Cần có tài khoản trước khi gửi bình luận.
- Trả lời giúp bạn cũng là giúp mình.
- Trả lời theo nội dung câu hỏi không bình luận lan man lạc chủ đề.
- Gửi câu trả lời phải rõ ràng, viết tiếng Việt có dấu.
- Trả lời có đính kèm liên kết tới website khác sẽ bị ban vĩnh viễn.
- Vi phạm chính sách sẽ dẫn tới việc bị dừng tất cả dịch vụ sử dụng tại website.
-
0
Bài giải:
( Tìm số tự nhiên y:
Y x 20002 = $\overline{1a8bc9d7}$ x 2
( a, b, c, d là các chữ số )
Y x 20002 = $\overline{1a8bc9d7}$ x 2
Y x 10001 x 2 = $\overline{1a8bc9d7}$ x 2
Y x 10001 = $\overline{1a8bc9d7}$
( Hai tích bằng nhau có cùng thừa số 2 nên hai thừa số còn lại bằng nhau )
Y không thể là số có 3 chữ số vì như vậy thì y x 10001 là số có 7 chữ số; y không thể là số có 5 chữ số vì vậy y x 10001 là số có 9 chữ số
Vậy y là số có 4 chữ số, đặt y = $\overline{mnpq}$ ta có:
$\overline{mnpq}$x 10001 = $\overline{mnpq}$ x ( 10000 + 1 )
= $\overline{mnpq0000}$ + $\overline{mnpq}$ = $\overline{mnpqmnpq}$
Do đó: $\overline{mnpqmnpq}$ = $\overline{1a8bc9d7}$
Suy ra: m = 1 = c
n = a = 9
p = 8 = d
q =b = 7
Vậy y = 1987Trả lời lúc: 13-12-2018 15:59


