Câu hỏi của Vinastudy - Hệ Thống Giáo Dục Trực Tuyến - Toán lớp 6 | Học trực tuyến

0

Cho $\widehat{xOy}$  và $\widehat{yOz}$ là hai góc kề bù. Biết  $\widehat{yOz}$ = 500. Kẻ tia phân giác Ot của $\widehat{xOy}$.  Tính $\widehat{tOz}$ ?

1 Trả Lời

Lưu ý khi trả lời:

- Cần có tài khoản trước khi gửi bình luận.

- Trả lời giúp bạn cũng là giúp mình.

- Trả lời theo nội dung câu hỏi không bình luận lan man lạc chủ đề.

- Gửi câu trả lời phải rõ ràng, viết tiếng Việt có dấu.

- Trả lời có đính kèm liên kết tới website khác sẽ bị ban vĩnh viễn.

- Vi phạm chính sách sẽ dẫn tới việc bị dừng tất cả dịch vụ sử dụng tại website.

  • 0

    Bài giải:


    77857


    Vì $\widehat{xOy}$ và $\widehat{yOz}$ là hai gó kề bù nên $\widehat{xOy}+\widehat{yOz}={{180}^{0}}$


    $\Rightarrow \widehat{xOy}={{180}^{0}}-\widehat{yOz}={{180}^{0}}-{{50}^{0}}={{130}^{0}}$


    Vì Ot là tia phân giác của $\widehat{xOy}$


    $\Rightarrow \widehat{xOt}=\frac{1}{2}\widehat{xOy}=\frac{1}{2}{{.130}^{0}}={{65}^{0}}$


    Có $\widehat{xOy}$ và $\widehat{yOz}$là hai góc kề bù nên Ox và Oz là hai tia đối nhau.


    $\Rightarrow $ $\widehat{xOt}$ và $\widehat{tOz}$ là hai góc kề bù


    $\Rightarrow \widehat{xOt}+\widehat{tOz}={{180}^{0}}$


    $\Rightarrow \widehat{tOz}={{180}^{0}}-\widehat{xOt}={{180}^{0}}-{{65}^{0}}={{115}^{0}}$


    Vậy đáp án đúng là: A