Câu hỏi của Vinastudy - Hệ Thống Giáo Dục Trực Tuyến - Toán lớp 8 | Học trực tuyến

0

Tìm giá trị của m để phương trình $\frac{2m-x}{3}+{{x}^{2}}-x+2m={{x}^{3}}-3x+2$ có một nghiệm bằng một nửa nghiệm của phương trình $x(x-2)+12=(x+1)(x+2)$ ?

1 Trả Lời

Lưu ý khi trả lời:

- Cần có tài khoản trước khi gửi bình luận.

- Trả lời giúp bạn cũng là giúp mình.

- Trả lời theo nội dung câu hỏi không bình luận lan man lạc chủ đề.

- Gửi câu trả lời phải rõ ràng, viết tiếng Việt có dấu.

- Trả lời có đính kèm liên kết tới website khác sẽ bị ban vĩnh viễn.

- Vi phạm chính sách sẽ dẫn tới việc bị dừng tất cả dịch vụ sử dụng tại website.

  • 0

    Bài giải:


    $\frac{2m-x}{3}+{{x}^{2}}-x+2m={{x}^{3}}-3x+2$                        (1)


    $x(x-2)+12=(x+1)(x+2)$


    $\Leftrightarrow {{x}^{2}}-2x+12={{x}^{2}}+3x+2$


    $\Leftrightarrow -5x=-10$


    $\Leftrightarrow $ x = 2


    Suy ra nghiệm của phương trình (1)bằng $\frac{1}{2}.2=1$ .


    Thay x = 1 vào phương trình (1) ta được:


    $\frac{2m-1}{3}+{{1}^{2}}-1+2m={{1}^{3}}-3.1+2$


    $\Leftrightarrow \frac{2m-1}{3}+2m=0$


    $\Leftrightarrow \frac{2}{3}m-\frac{1}{3}+2m=0$


    $\Leftrightarrow \frac{8}{3}m=\frac{1}{3}$


    $\Leftrightarrow m=\frac{1}{8}$


    Vậy đáp án đúng là: D