Câu hỏi của Vinastudy - Hệ Thống Giáo Dục Trực Tuyến - Toán lớp 8 | Học trực tuyến
0
Cho $\Delta $ABC (AB < AC), điểm D thuộc cạnh BC sao cho BD = $\frac{1}{2}$ DC. Kẻ BF và CE vuông góc với AD. Khi đó:
Hỏi lúc: 13-12-2018 14:35
1 Trả Lời
Lưu ý khi trả lời:
- Cần có tài khoản trước khi gửi bình luận.
- Trả lời giúp bạn cũng là giúp mình.
- Trả lời theo nội dung câu hỏi không bình luận lan man lạc chủ đề.
- Gửi câu trả lời phải rõ ràng, viết tiếng Việt có dấu.
- Trả lời có đính kèm liên kết tới website khác sẽ bị ban vĩnh viễn.
- Vi phạm chính sách sẽ dẫn tới việc bị dừng tất cả dịch vụ sử dụng tại website.
-
0
Bài giải:
Gọi N là trung điểm của DC suy ra: CN = ND = BD.
Từ N kẻ NO $\bot $AD
Ta có: NO $\bot $AD; CE $\bot $ AD nên ON // EC.
Xét $\Delta $CED ta có:
N là trung điểm của DC; ON // EC nên O là trung điểm của DE.
$\Rightarrow $NO là đường trung bình của $\Delta $CED.
$\Rightarrow $NO = $\frac{1}{2}$ EC.
Xét $\Delta $vuông BDF và $\Delta $vuông NDO ta có;
BD = DN ; $\widehat{BDF}=\widehat{NDO}$
$\Rightarrow $$\Delta $BDF = $\Delta $NDO (cạnh huyền – góc nhọn)
$\Rightarrow $BF = ON nên BF = $\frac{1}{2}$CE
Vậy đáp án đúng là: B
Trả lời lúc: 13-12-2018 16:00