Câu hỏi của Vinastudy - Hệ Thống Giáo Dục Trực Tuyến - Toán lớp 4 | Học trực tuyến
0
Cầu thang có 10 bậc. Với mỗi bước, người khổng lồ Gouliver có thể nhảy một số bậc tùy ý. Vậy Gouliver có bao nhiêu cách để đi hết cầu thang?
Hỏi lúc: 13-12-2018 14:36
1 Trả Lời
Lưu ý khi trả lời:
- Cần có tài khoản trước khi gửi bình luận.
- Trả lời giúp bạn cũng là giúp mình.
- Trả lời theo nội dung câu hỏi không bình luận lan man lạc chủ đề.
- Gửi câu trả lời phải rõ ràng, viết tiếng Việt có dấu.
- Trả lời có đính kèm liên kết tới website khác sẽ bị ban vĩnh viễn.
- Vi phạm chính sách sẽ dẫn tới việc bị dừng tất cả dịch vụ sử dụng tại website.
-
0
Bài giải:
Gọi n là số bậc thang, ta sẽ xét các trường hợp đi từ đơn giản đến phức tạp, phụ thuộc vào giá trị tăng dần của số bậc thang n
Với n = 1, có 1 cách đi là bước 1 bậc 1 lần
Với n = 2, có 2 cách đi, biểu diễn dưới dạng số bước chân lần lượt là: 2 = 1 + 1
Với n = 3, có 3 = 1 + 1 + 1 = 1 + 2 = 2 +1. Vậy có 4 cách đi
Với n = 4, có 4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1 = 1 + 3 = 2 + 1 + 1 = 2 + 2 = 3 + 1. Vậy có 8 cách đi
Liệt kê dãy số cách đi, tương ứng với n tăng dần từ 1, ta được dãy số: 1, 2, 4, 8, … Đây là dãy số mà mỗi số bằng số trước nó nhân với 2
Với n = 5, có 16 cách đi
Với n = 6, có 32 cách đi
Với n = 7, có 64 cách đi
Với n = 8, có 128 cách đi
Với n = 9, có 256 cách đi
Với n = 10, có 512 cách đi
Vậy Gouliver có 512 cách để đi hết cầu thangTrả lời lúc: 13-12-2018 16:00