Các bài toán hình về diện tích
Chia sẻ nếu thấy tài liệu này có ích!
GIẢI PHƯƠNG TRÌNH CÓ CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI
Bài 1. Giải phương trình $\left| 2x-1 \right|=7$
Lời giải
$\left| 2x-1 \right|=7$
$\Leftrightarrow \left[ \begin{align} & 2x-1=7 \\ & 2x-1=-7 \\ \end{align} \right.$
$\Leftrightarrow \left[ \begin{align} & x=4 \\ & x=-3 \\ \end{align} \right.$
Vậy nghiệm của phương trình là $x=-3$ hoặc $x=4$
Bài 2. Giải phương trình $\left| 2x \right|=\left| x+1 \right|$
Lời giải
$\left| 2x \right|=\left| x+1 \right|$
$\Leftrightarrow \left[ \begin{align} & 2x=x+1 \\ & 2x=-x-1 \\ \end{align} \right.$
$\Leftrightarrow \left[ \begin{align} & x=1 \\ & x=-\frac{1}{3} \\ \end{align} \right.$
Vậy nghiệm của phương trình là: $x=1$ hoặc $x=-\frac{1}{3}$
Bài 3. Tập nghiệm của phương trình $\left| {{x}^{2}}+5 \right|=\left| 6x \right|$ là:
Lời giải
$\left| {{x}^{2}}+5 \right|=\left| 6x \right|$
$\Leftrightarrow \left[ \begin{align} & {{x}^{2}}+5=6x \\ & {{x}^{2}}+5=-6x \\ \end{align} \right.$
$\Leftrightarrow \left[ \begin{align} & {{x}^{2}}-6x+5=0 \\ & {{x}^{2}}+6x+5=0 \\ \end{align} \right.$
$\Leftrightarrow \left[ \begin{align} & \left( x-1 \right)\left( x-5 \right)=0 \\ & \left( x+1 \right)\left( x+5 \right)=0 \\ \end{align} \right.$
$\Leftrightarrow \left[ \begin{align} & x-1=0 \\ & x-5=0 \\ & x+1=0 \\ & x+5=0 \\ \end{align} \right.$
$\Leftrightarrow \left[ \begin{align} & x=1 \\ & x=5 \\ & x=-1 \\ & x=-5 \\ \end{align} \right.$
Vậy tập nghiệm của phương trình là: $S=\left\{ \pm 1;\,\pm 5 \right\}$
Bài 4. Giải phương trình $\left| 5x-1 \right|=2x-6$
Lời giải
ĐKXĐ: $2x-6\ge 0$ $\Leftrightarrow x\ge 3$
$\left| 5x-1 \right|=2x-6$
$\Leftrightarrow \left[ \begin{align} & 5x-1=2x-6 \\ & 5x-1=6-2x \\ \end{align} \right.$
$\Leftrightarrow \left[ \begin{align} & 3x=-5 \\ & 7x=7 \\ \end{align} \right.$
$\Leftrightarrow \left[ \begin{align} & x=-\frac{5}{3} \\ & x=1 \\ \end{align} \right.$ (không thỏa mãn)
Vậy phương trình vô nghiệm
Bài 5. Giải phương trình ${{x}^{2}}-x-12=\left| -5x+20 \right|$
Lời giải
ĐKXĐ: ${{x}^{2}}-x-12\ge 0$
$\Leftrightarrow \left( x-4 \right)\left( x+3 \right)\ge 0$
$\Leftrightarrow \left[ \begin{align} & x\ge 4 \\ & x\le -3 \\ \end{align} \right.$
${{x}^{2}}-x-12=\left| -5x+20 \right|$
$\Leftrightarrow \left[ \begin{align} & {{x}^{2}}-x-12=-5x+20 \\ & {{x}^{2}}-x-12=5x-20 \\ \end{align} \right.$
$\Leftrightarrow \left[ \begin{align} & {{x}^{2}}+4x-32=0 \\ & {{x}^{2}}-6x+8=0 \\ \end{align} \right.$
$\Leftrightarrow \left[ \begin{align} & \left( x-4 \right)\left( x+8 \right)=0 \\ & \left( x-2 \right)\left( x-4 \right)=0 \\ \end{align} \right.$
$\Leftrightarrow \left[ \begin{align} & x=2\,\,(ktm) \\ & x=4\,\left( tm \right) \\ & x=-8\left( tm \right) \\ \end{align} \right.$
Vậy nghiệm của phương trình là: $x=-8$ hoặc $x=4$
Bài 6. Giải phương trình $\left| {{x}^{2}}-5x \right|=10-2x$
Lời giải
ĐKXĐ: $10-2x\ge 0$
$\Leftrightarrow x\le 5$
$\left| {{x}^{2}}-5x \right|=10-2x$
$\Leftrightarrow \left[ \begin{align} & {{x}^{2}}-5x=10-2x \\ & {{x}^{2}}-5x=2x-10 \\ \end{align} \right.$
$\Leftrightarrow \left[ \begin{align} & {{x}^{2}}-3x-10=0 \\ & {{x}^{2}}-7x+10=0 \\ \end{align} \right.$
$\Leftrightarrow \left[ \begin{align} & \left( x+2 \right)\left( x-5 \right)=0 \\ & \left( x-2 \right)\left( x-5 \right)=0 \\ \end{align} \right.$
$\Leftrightarrow \left[ \begin{align} & x=-2 \\ & x=2 \\ & x=5 \\ \end{align} \right.$ (thỏa mãn)
Vậy nghiệm của phương trình là $x=-2$ hoặc $x=2$ hoặc $x=5$
Bài 7. Giải phương trình $\left| 6-3x \right|+3\left| x+1 \right|=9$
Lời giải
$\left| 6-3x \right|+3\left| x+1 \right|=9$
$\Leftrightarrow \left| 6-3x \right|+\left| 3x+3 \right|=9$
Ta có: $\left| 6-3x \right|+\left| 3x+3 \right|\le \left| 6-3x+3x+3 \right|=9$ với mọi $x$
Do đó $\left| 6-3x \right|+3\left| x+1 \right|=9$ $\Leftrightarrow \left( 6-3x \right)\left( 3x+3 \right)\ge 0$
$\Leftrightarrow \left( 2-x \right)\left( x+1 \right)\ge 0$
$\Leftrightarrow -1\le x\le 2$
Bài 8. Giải phương trình $\left| 4x+5 \right|+\left| 2-x \right|=\left| 3x-7 \right|$
Lời giải
Ta có: $\left| 4x+5 \right|+\left| 2-x \right|\le \left| 4x+5+2-x \right|=\left| 3x-7 \right|$ với mọi $x$
Do đó $\left| 4x+5 \right|+\left| 2-x \right|=\left| 3x-7 \right|$ $\Leftrightarrow \left( 4x+5 \right)\left( 2-x \right)\ge 0$
$\Leftrightarrow -\frac{5}{4}\le x\le 2$
Bài 9. Giải phương trình $\left| x+2 \right|+\left| x+9 \right|=3x-1$
Lời giải
ĐKXĐ: $x\ge \frac{1}{3}$
Với $x\ge \frac{1}{3}$ thì $x+2>0$ và $x+9>0$
$\left| x+2 \right|+\left| x+9 \right|=3x-1$
$\Leftrightarrow x+2+x+9=3x-1$
$\Leftrightarrow x=12$ (thỏa mãn)
Vậy nghiệm của phương trình là $x=12$
Bài 10. Giải phương trình $\left| 4x+7 \right|-\left| 2x-3 \right|=4x+1$
Lời giải
TH1: $x<-\frac{7}{4}$
$\left| 4x+7 \right|-\left| 2x-3 \right|=4x+1$
$\Leftrightarrow -4x-7-\left( 3-2x \right)=4x+1$
$\Leftrightarrow -4x-7-3+2x=4x+1$
$\Leftrightarrow 6x=-11$
$\Leftrightarrow x=-\frac{11}{6}$ (thỏa mãn)
TH2: $-\frac{7}{4}\le x<\frac{2}{3}$
$\left| 4x+7 \right|-\left| 2x-3 \right|=4x+1$
$\Leftrightarrow 4x+7-\left( 3-2x \right)=4x+1$
$\Leftrightarrow 4x+7-3+2x=4x-1$
$\Leftrightarrow 2x=-5$
$\Leftrightarrow x=-\frac{5}{4}$ (thỏa mãn)
TH3: $x\ge \frac{2}{3}$
$\left| 4x+7 \right|-\left| 2x-3 \right|=4x+1$
$\Leftrightarrow 4x+7-2x+3=4x+1$
$\Leftrightarrow 2x=9$
$\Leftrightarrow x=\frac{9}{2}$ (thỏa mãn)
Vậy nghiệm của phương trình là: $x=-\frac{11}{6}$ hoặc $x=-\frac{5}{4}$ hoặc $x=\frac{9}{2}$