[Toán nâng cao lớp 5] - Tư duy bài toán tính nhanh phân số
Ngày đăng: 26/10/2020
Cộng đồng zalo giải đáo bài tập
Các bạn học sinh tham gia nhóm zalo để trao đổi giải đáp bài tập nhé
Con sinh năm 2009 | https://zalo.me/g/cieyke829 |
Con sinh năm 2010 | https://zalo.me/g/seyfiw173 |
Con sinh năm 2011 | https://zalo.me/g/jldjoj592 |
Con sinh năm 2012 | https://zalo.me/g/ormbwj717 |
Con sinh năm 2013 | https://zalo.me/g/lxfwgf190 |
Con sinh năm 2014 | https://zalo.me/g/bmlfsd967 |
Con sinh năm 2015 | https://zalo.me/g/klszcb046 |
Trong chương trình toán 5, các dạng bài tập về tính nhanh luôn là các dạng bài tập hay và khó. Các con không chỉ cần nắm được quy tắc tính toán cơ bản mà còn cần có những kĩ năng quan sát, vận dụng linh hoạt các tính chất của bốn phép toán. Để giúp các con chinh phục những bài toán khó này, thầy Nguyễn Thành Long – một trong những giáo viên hàng đầu của Hệ thống giáo dục Vinastudy chúng tôi xin gửi đến quí PHHS và các con học sinh thân yêu bài giảng “Tư duy bài toán tính nhanh phân số” này. Mong rằng video sẽ giúp các con có thêm những kiến thức bổ ích.
- Kiến thức cần nhớ.
- Cộng trừ các phân số cùng mẫu số:
Quy tắc: Muốn cộng (hoặc trừ) hai phân số cùng mẫu số, ta cộng (hoặc trừ) hai tử số với nhau và giữ nguyên mẫu số.
Ví dụ. $\frac{5}{6}+\frac{8}{6}=\frac{13}{6}$
Lưu ý. Sau khi làm phép tính cộng (hoặc trừ) hai phân số, nếu chưa thu được phân số tối giản thì ta phải rút gọn thành phân số tối giản.
- Cộng trừ các phân số khác mẫu số:
Quy tắc: Muốn cộng (hoặc trừ) hai phân số khác mẫu số, ta phải quy đồng hai phân số đó rồi cộng (hoặc trừ) hai phân số đã quy đồng.
Ví dụ. $\frac{1}{6}+\frac{2}{5}=\frac{5}{30}+\frac{12}{30}=\frac{17}{30}$
- Tính chất của phép cộng phân số.
- Tính chất giao hoán. Khi đổi chỗ các phân số trong một tổng thì tổng của chúng không thay đổi.
Ví dụ. $\frac{5}{6}+\frac{8}{6}=\frac{8}{6}+\frac{5}{6}$
- Tính chất kết hợp. Khi cộng một tổng hai phân số với phân số thứ ba thì ta có thể cộng phân số thứ nhất với tổng hai phân số còn lại.
Ví dụ. $\frac{5}{6}+\left( \frac{1}{6}+\frac{11}{6} \right)=\left( \frac{5}{6}+\frac{1}{6} \right)+\frac{11}{6}=1+\frac{11}{6}=\frac{17}{6}$
- Cộng với 0. Phân số nào cộng với 0 cũng chính bằng phân số đó.
Ví dụ. $\frac{5}{6}+0=\frac{5}{6}$
Lưu ý. Ta thường áp dụng các tính chất của phép cộng phân số trong các bài tính nhanh.
- Phép nhân phân số.
Quy tắc: Muốn nhân hai phân số, ta lấy tử số nhân với tử số, mẫu số nhân với mẫu số. Trong trường hợp có thừa số là số tự nhiên, ta nhân số tự nhiên đó với tử số của phân số và giữ nguyên mẫu số.
Chú ý. Trước khi tính, có thể rút gọn phân số (nếu cần)
Ví dụ $\frac{5}{6}\times 7=\frac{5\times 7}{6}=\frac{35}{6}$
- Tính chất của phép nhân phân số.
- Tính chất giao hoán. Khi đổi chỗ các phân số trong một tích thì tích của chúng không thay đổi.
Ví dụ. $\frac{5}{6}\times \frac{8}{6}=\frac{8}{6}\times \frac{5}{6}$
- Tính chất kết hợp. Khi nhân một tích hai phân số với phân số thứ ba thì ta có thể nhân phân số thứ nhất với tích hai phân số còn lại.
Ví dụ. $\frac{5}{6}\times \left( \frac{6}{10}\times \frac{11}{6} \right)=\left( \frac{5}{6}\times \frac{6}{10} \right)\times \frac{11}{6}=\frac{1}{2}\times \frac{11}{6}=\frac{11}{12}$
- Nhân với 0. Phân số nào cộng với 0 cũng chính bằng 0.
Ví dụ. $\frac{5}{6}\times 0=0$
Lưu ý. Ta thường áp dụng các tính chất của phép cộng phân số trong các bài tính nhanh.
- So sánh hai phân số.
- So sánh hai phân số cùng mẫu số:
- Phân số nào có tử số bé hơn thì bé hơn
- Phân số nào có tử số lớn hơn thì lớn hơn.
- Nếu tử số bằng nhau thì hai phân số đó bằng nhau.
- So sánh hai phân số khác mẫu số: ta có thể quy đồng mẫu số hai phân số đó rồi so sánh các tử số của chúng.
- Ví dụ
Ví dụ 1. Tính nhanh.
$\text{A}=\frac{1}{1\times 2}+\frac{1}{2\times 3}+...+\frac{1}{99\times 100}$
Phân tích.
- Tử số đều bằng 1.
- Hiệu hai thừa số ở dưới mẫu = 1 = Tử số
Ta có: $\frac{1}{1\times 2}=\frac{2-1}{1\times 2}=\frac{2}{1\times 2}-\frac{1}{1\times 2}=\frac{1}{1}-\frac{1}{2}$
$\frac{1}{2\times 3}=\frac{3-2}{2\times 3}=\frac{3}{2\times 3}-\frac{2}{2\times 3}=\frac{1}{2}-\frac{1}{3}$
$\frac{1}{99\times 100}=\frac{100-99}{99\times 100}=\frac{100}{99\times 100}-\frac{99}{99\times 100}=\frac{1}{99}-\frac{1}{100}$
Vậy: \[\text{A}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\]
$\text{A}=1-\frac{1}{100}=\frac{99}{100}$
Chú ý: Hiệu hai thừa số dưới mẫu bằng tử số: $\frac{b-a}{a\times b}=\frac{1}{a}-\frac{1}{b}$
Ví dụ 2. Tính nhanh.
$\text{B}=\frac{1}{1\times 4}+\frac{1}{4\times 7}+\frac{1}{7\times 10}+...+\frac{1}{97\times 100}$
Phân tích.
- Tử số đều bằng 1.
- Mẫu số = tích hai thừa số
Hiệu hai thừa số ở dưới mẫu = 3
$\to $ Vấn đề. Tử số khác hiệu 2 thừa số dưới mẫu
$\to $ Giải pháp. Tử số bằng hiệu 2 thừa số dưới mẫu
$\to $ Làm thế nào?
$3\times \text{B}=3\left( \frac{1}{1\times 4}+\frac{1}{4\times 7}+\frac{1}{7\times 10}+...+\frac{1}{97\times 100} \right)$
$\text{B}=\frac{3}{1\times 4}+\frac{3}{4\times 7}+\frac{3}{7\times 10}+...+\frac{3}{97\times 100}$
Vậy: \[\text{B}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\]
$3\times \text{B}=1-\frac{1}{100}=\frac{99}{100}$ nên $\text{B}=\frac{33}{100}$
Dạng toán mở rộng:
Ví dụ 1. Tính tổng: $\text{C}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}$
Phân tích.
- Tử số đều bằng 1.
- Mẫu số của phân số đứng sau gấp 2 lần mẫu số phân số đứng trước
Ta có: $\frac{1}{4}=\frac{2-1}{4}=\frac{2}{4}-\frac{1}{4}=\frac{1}{2}-\frac{1}{4}$;
$\frac{1}{8}=\frac{2-1}{8}=\frac{2}{8}-\frac{1}{8}=\frac{1}{4}-\frac{1}{8}$
Tương tự như thế:
$\frac{1}{16}=\frac{1}{8}-\frac{1}{16}$
$\frac{1}{32}=\frac{1}{16}-\frac{1}{32}$
$\frac{1}{64}=\frac{1}{32}-\frac{1}{64}$
$\frac{1}{128}=\frac{1}{64}-\frac{1}{128}$
Vậy $\text{C}=\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}$
$\text{C}=1-\frac{1}{128}=\frac{127}{128}$
Vậy $\text{C}=\frac{127}{128}$
- Kiến thức cần nhớ.
Bài 1. Tính nhanh:
- a) \[\text{A}=\frac{2}{1\times 2}+\frac{2}{2\times 3}+\frac{2}{3\times 4}+...+\frac{2}{99\times 100}\]
- b) \[\text{B}=\frac{3}{3\times 5}+\frac{3}{5\times 7}+\frac{3}{7\times 9}+...+\frac{3}{49\times 50}\]
- c) \[\text{C}=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\]
- d) \[\text{D}=\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{41}{42}+\frac{55}{56}+\frac{89}{90}\]
Bài 2. So sánh S với 2, biết:
$S=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{45}$
Bài 3. Tính nhanh.
$\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}$
Để giúp học sinh củng cố và mở rộng kiến thức về các phép toán, VinaStudy đã xây dựng một số bài giảng, bài thi thử như:
Ôn tập về phép cộng và phép trừ phân số
Ôn tập về phép nhân và phép chia hai phân số
Ngoài ra, học sinh và phụ huynh có thể tham khảo thêm các chương trình học phù hợp với năng lực của từng con:
Khóa ôn và luyện Toán lớp 5 học kì I
Các dạng bài trọng tâm và nâng cao luyện thi Violympic Toán 5
15 đề luyện Violympic quốc gia Toán 5
Hệ thống giáo dục Vinastudy.vn chúc các con học tốt!!!
Tác giả: Vinastudy
Cộng đồng zalo giải đáo bài tập
Các bạn học sinh tham gia nhóm zalo để trao đổi giải đáp bài tập nhé
Con sinh năm 2009 | https://zalo.me/g/cieyke829 |
Con sinh năm 2010 | https://zalo.me/g/seyfiw173 |
Con sinh năm 2011 | https://zalo.me/g/jldjoj592 |
Con sinh năm 2012 | https://zalo.me/g/ormbwj717 |
Con sinh năm 2013 | https://zalo.me/g/lxfwgf190 |
Con sinh năm 2014 | https://zalo.me/g/bmlfsd967 |
Con sinh năm 2015 | https://zalo.me/g/klszcb046 |
********************************
Hỗ trợ học tập:
_Kênh Youtube:http://bit.ly/vinastudyvn_tieuhoc
_Facebook fanpage:https://www.facebook.com/767562413360963/
_Hội học sinh Vinastudy Online:https://www.facebook.com/groups/online.vinastudy.vn/
Khách hàng nhận xét
Đánh giá trung bình
3/5
(81 nhận xét)
1
46%
2
0%
3
9%
4
7%
5
38%
Chia sẻ nhận xét về sản phẩm
Gửi nhận xét của bạn
1. Đánh giá của bạn về sản phẩm này: (*)
2. Tên của bạn: (*)
3. Email liên hệ:
3. Viết nhận xét của bạn: (*)
* Những trường có dấu (*) là bắt buộc.
* Để nhận xét được duyệt, quý khách lưu ý tham khảo Tiêu chí duyệt nhận xét của Vinastudy
-
vân huyền
rất hay
-
Linh
bài này rât co ich
-
Dũng
Tạm,hơi khó hiểu.
-
huy
good
Các tin mới nhất
Ngày đăng: 2023/12/06
Ngày đăng: 2022/12/23
Ngày đăng: 2022/12/23
Ngày đăng: 2022/12/23
Ngày đăng: 2022/12/23
Ngày đăng: 2022/12/23
Ngày đăng: 2022/12/08
Ngày đăng: 2022/12/08
Ngày đăng: 2022/12/08
Ngày đăng: 2022/12/08