Câu hỏi của Vinastudy - Hệ Thống Giáo Dục Trực Tuyến - Toán lớp Luyện thi THPQG | Học trực tuyến
0
Cho hình chóp S.ABCD có ABCD là hình bình hành, M là trung điểm SC. Mặt phẳng (P) qua AM và song song với BD cắt SB, SD lần lượt tại P và Q.Khi đó tỉ số thể tích giữa khối SAPMQ và khối SABCD bằng :
Hỏi lúc: 13-12-2018 14:36
1 Trả Lời
Lưu ý khi trả lời:
- Cần có tài khoản trước khi gửi bình luận.
- Trả lời giúp bạn cũng là giúp mình.
- Trả lời theo nội dung câu hỏi không bình luận lan man lạc chủ đề.
- Gửi câu trả lời phải rõ ràng, viết tiếng Việt có dấu.
- Trả lời có đính kèm liên kết tới website khác sẽ bị ban vĩnh viễn.
- Vi phạm chính sách sẽ dẫn tới việc bị dừng tất cả dịch vụ sử dụng tại website.
-
0
Vì mp song song với BD nên PQ song song với BD.Gọi O là tâmhình bình hành ABCD.
Suy luận được SO,AM, PQ đồng qui tại G và G là trọng tâm tam giác SAC.
Suy luận được tỉ số=$\frac{SQ}{SD}=\frac{SP}{SB}=\frac{2}{3}$;
Chứng minh được tỉ số thể tích :$\frac{{{V}_{SAQM}}}{{{V}_{SADC}}}=\frac{{{V}_{SAPM}}}{{{V}_{SABC}}}=\frac{1}{3}$;
Suy ra được:
$\begin{align} & \frac{{{V}_{SAQM}}+{{V}_{SAPM}}}{{{V}_{SADC}}+{{V}_{SABC}}}=\frac{1}{3} \\ & \Rightarrow \frac{{{V}_{SAPMQ}}}{{{V}_{SABCD}}}=\frac{1}{3} \\ \end{align}$
Trả lời lúc: 13-12-2018 15:59


