Câu hỏi của Vinastudy - Hệ Thống Giáo Dục Trực Tuyến - Toán lớp Luyện thi THPQG | Học trực tuyến
0
Tìm giá trị nhỏ nhất của hàm số $y=\frac{{{x}^{2}}+3}{x-1}$ trên đoạn $\left[ 2;4 \right]$
Hỏi lúc: 13-12-2018 14:36
1 Trả Lời
Lưu ý khi trả lời:
- Cần có tài khoản trước khi gửi bình luận.
- Trả lời giúp bạn cũng là giúp mình.
- Trả lời theo nội dung câu hỏi không bình luận lan man lạc chủ đề.
- Gửi câu trả lời phải rõ ràng, viết tiếng Việt có dấu.
- Trả lời có đính kèm liên kết tới website khác sẽ bị ban vĩnh viễn.
- Vi phạm chính sách sẽ dẫn tới việc bị dừng tất cả dịch vụ sử dụng tại website.
-
0
Ta có $y'=\frac{{{x}^{2}}-2x-3}{x-1}=0\Leftrightarrow \left[ \begin{matrix} x=-1\notin \left[ 2;4 \right] \\ x=3\in \left[ 2;4 \right] \\ \end{matrix} \right.$ . Do hàm số đã cho liên tục trên đoạn $\left[ 2;4 \right]$ và có $y\left( 2 \right)=7;y\left( 3 \right)=6;y\left( 4 \right)=\frac{19}{3}$ . Suy ra $\underset{\left[ 2;4 \right]}{\mathop{\min }}\,y=6$.
Trả lời lúc: 13-12-2018 15:59


